phloc-logging 1.2

A generic Java Logging System
Philip Helger / phloc systems / ph@phloc.com
June 12, 2008

Abstract

Logging techniques are becoming more important in distributed environments in which
communication is performed by message passing, or remote invocations, through unreli-
able networks like the Internet. As far as I know no general-purpose logging system exists
because of the divergence of system requirements. This document introduces a new log-
ging system called phloc-logging which is introduced and described in detail. Its internal
operating and usage is also explained in detail. This paper finishes with a short outlook
containing ideas for possible extensions and other uses.

1 Logging System

1.1 Introduction

Logging systems were originally used for auditing, keeping histories and reliability mainte-
nance. Today, logging techniques are also popular in file system structuring, profiling and
performance analysis, debugging, checkpointing and recovery (fault tolerance), analysis and
some garbage collection systems.

1.2 Basic concepts
1.2.1 Log

Basically, a log is a piece of non-volatile storage that can be separated into records. It might be
a plain text file, a special structured file, or a database [2].

1.2.2 Record

A log storage unit is the record. A record often consists of a descriptor and a body. The
descriptor may contain information for interpreting the body semantics, to find the location of
the record on the log and its origin, e.g. time stamp, logging client identifier, etc. The body is
the information that the logging client wishes to store [2].



1.2.3 Logging semantics

A typical log often has the following semantics:
e append-only - writes always append records to the log
e Obsolete records may be cleaned or removed

e Logs can be read randomly or sequentially, in backward or forward order [2]

1.2.4 Logical and physical logs

Ruffin [2] distinguished two kinds of logs: logical and physical logs. A physical log is a real
storage medium that store records from different logging clients, like files in a file system or
databases. A logical log is a logical view of the client into physical logs. It only consists of
records that are relevant to a particular client and can be compared to a view in a relational
database.

1.2.5 Log level

To separate log records according to their importance log levels exist. A log level is meta-
information to a log record and can be of any type as long as an order criteria can be defined
on that type. A common log level system may contain the following items[3] (in order of
ascending priority):

o TRACE designates finer-grained informational events than DEBUG

e DEBUG designates informational messages that highlight the progress of the application
at fine-grained level

e INFO designates informational messages that highlight the progress of the application at
coarse-grained level

o WARN designates potentially harmful situations
e ERROR error events that may still allow the application to continue running

e FATAL severe error events that will presumably lead the application to abort

1.2.6 Input and Output

When logging a record it needs to be taken into account, that the message source of a single
record is not necessarily a string, but can also be a reference into a resource file that stores
the message in a particular language. Normally the output of a log record is either discarded,
according to the log level, or send to one or more receiver(s). Consider having a test machine
which runs an application and logs each and everything into a database for later evaluation.
Nevertheless, a user of the application expects error messages to occur on his user interface and
a developer wants to see debug output without explicitly querying a database. The element that
forwards input messages to output devices is called the dispatcher.



Input

Log Dispatcher

Input

Figure 1: Input and output handling of a logging system

The following list exemplary summarizes the possibilities that Log4J! offers for output de-

vices.

JDBC? logging

JMS? logging

LogFactor5* logging

Windows NT event logger

Null logger that logs nothing

SMTP? logger to log records via email

Socket logger to log to a remote device

Syslog logger to log to a remote syslog daemon
Telnet logger to log to a Telnet socket

Console logger to log to st dout® or stderr’
File logger to log to a local file

Asynchronous logging

In any large software system multilinguality is an issue since software can easily be spread
over the Internet and used in many different countries. This can be an issue for a logging
system as well in case it is used for end-user messages. In this case the input should not
be a hard coded string but a language-independent identifier that can be used to resolve the
real language-dependent string. It depends on the purpose of the logging whether a string
needs to be translated or not. A rule of thumb is to make information (if visible to the user),

'A well known Java-based logging system maintained by the Apache foundation.
2JDBC: Java Database Connectivity

3JMS: Java Messaging Service

* A GUI for the Log4j framework

SSMTP: Simple Mail Transfer Protocol

Sstdout: Standard output device

"stderr: Standard error device



warnings, errors and fatal errors language independent. Trace and debug statements normally
don’t need translation, since they should never be visible to the end user but only to developers
for debugging purposes or to system managers for maintenance.

1.2.7 Log contexts

Each log record occurs in a special context that can be assembled from many different proper-
ties. These properties can include e.g. the time when the logging was performed, the name of
the file in which the logging action was initiated or the name of the operating system on which
the application is executed and many more. These properties can be divided into three different
groups:

e Properties provided by the programmer (the message object, and additional information
and the log level),

e Properties known at programming-time (the source file, the name of the class where
logging is initiated etc.) and

e Properties known at runtime (the time when a message was issued, the name of the
operating system etc.).

Each log record receives a copy of each property-value valid at the time the log record was
initiated. Some of these property-values stay constant while running an application (e.g. the
operating system name) and others change (e.g. the time). Other property-values stay constant
for each invocation of the same log statement®mainly the property values concerning the source
of a log statement) whereas some may change (e.g. the unique sequence number).

1.2.8 Additional information

Sometimes it is required to add additional information to a log record to further specify the
logged information. An example for additional information is an exception® that was thrown
by the application and can to be added to a log record to detail the information. This information
should not limited to exceptions because erroneous objects may be passed as well to track down
errors. The additional information may contain anything that does not necessarily belong to a
log record but improves the usability for the person interpreting the log message.

1.3 Technical issues
1.3.1 Performance

One is of course the performance issue. In case of Java [4], where no pre-processor is available
(like in C or C++), each logging statement within the code will a) increase the code size, which
implies a higher memory consumption of the Java Virtual Machine (JVM) and b) decrease the
execution speed, since each logging statement needs to be evaluated at runtime. According to
Log4J[3] the determination whether a statement needs to be logged or not takes approximately

8The same log statement means a log statement that is executed more than once while an application is running.
Some logging systems like Apache Commons Logging accept only exception objects as additional information
but a general purpose logging system needs to handle all kind of objects.



5 nanoseconds on an AMD Opteron clocked at §00MHz with Sun JDK 1.3.1. According to my
personal measurements with Log4J 1.2.8 on an Intel Pentium-M with 1.86GHz, 2GB RAM,
Windows XP (SP 2) and Sun JDK 1.4.2 logging a record takes between 150 nanoseconds,
if the logging messages is discarded by the first check, and 780 nanoseconds, if the logger
object is acquired and logging takes place on a "NullAppender”!®. Of course this information
depends on the logging system and hardware parameters like the CPU speed, the amount of
main memory available and the used Java compiler.

1.3.2 Modularity

Another issue is the modularity of a logging system. An advanced logging system needs to
handle a log record with more than one log handler e.g. for both persistent storage in a database
and displaying on a console. Another aspect of modularity is the configuration of the logging
system. It should be possible to handle log messages of one class different from the rest of the
application by changing either the output devices, the log level or selecting different contexts
(see section 2.2.2). This modularity can be achieved with a plugin-like system for log handlers
that perform different actions depending on the desired output device. Of course each handler
needs to have a common interface so that it can be dynamically added.

1.3.3 Flexibility

A logging system needs to be flexible so that it can be queried and modified at runtime. Queries
include the currently registered log handlers in a certain context, or querying the available
contexts. Modification includes changing the log level, adding or removing log handlers and
changing the available log contexts at runtime. It is also a possibility to add or remove log
record filters at runtime to decrease the amount of output by ignoring all messages that do not
match one or more filter criteria.

1.3.4 Multi threading

Multi threading needs to be considered to allow multiple threads within one process to access
the logging system in parallel. Multi threading can be an issue for both log dispatching and for
sending messages to the output devices. Receiving messages via a socket connection needs to
be multi threaded anyway since each client requires a connection for its own which can only be
handled by separate threads'!.

1.3.5 Location independence

For distributed applications it may be a requirement to store all log records in a central data
storage like a database or a SAN'?. This means that the logging is performed on each client
separately but collected on a central server. That requires the logging system to send and

1A NullAppender is a dummy appender that acts like a normal appender but does not persist the message on any
device.

"Because the network operation accepting a connection is normally a blocking operation which means that the
function only returns when an incoming connection is detected or a timeout occurs. This is normally imple-
mented by an extra thread waiting for incoming connections and per-client worker threads.

12Storage Area Network



receive messages via a network to the central storage. Therefore a network protocol needs
to be defined and in case the logged data contains sensitive information the data needs to be
encrypted.

2 The generic phloc-logging system

In this section, the implementation of the logging system called phloc-logging is described
and the implementation issues are discussed. It contains as well a quick start guide for a pro-
grammer to simplify the process of getting started. The logging system is published as Open
Source under the Apache License 2.0 and can be publicly downloaded from the SourceForge
web site!? or via anonymous CVS access. Please refer to the SourceForge notes on how to do
an anonymous CVS checkout.

2.1 Overview

phloc-logging is designed to be reliable, fast, extensible and easy to use. It consists of three
main parts: input, a dispatcher and output devices. The logging system is implemented in Java
and was successfully tested with the Sun J2SE 1.4.2 and higher.

2.2 Input

The input consists of a list that contains all values required to create a log message. There are
two types of input: static input and dynamic input. Static input is defined as input provided by
the user of the logging system (THE programmer) and is known at development time. It is one
of the following: the message (including an optional additional information), the log level (the
priority) of the log message and the logger object used to issue the message. Dynamic input in
contrast can be any data that is not explicitly provided by the programmer like e.g. the date and
time when the message was issued, the name of the computer where the message was issued or
the name of the thread issuing the message. When sending a log message, the programmer does
not need to know anything about the dynamic input since they are automatically handled by the
logging system, he only needs to care about the static input. Each part of input is described by
a so called log context and is further detailed in chapter 2.2.2.

The input for a single log message is generalized by the ILogMe s sage interface that simply
encapsulates the object to be logged (in the method getMessageObject) and the optional
additional information object (in the method getAdditionalInformation).

2.2.1 Log level

The log level designates the severity of a log message. The higher a log level of a mes-
sage the more severe is a message. The log level is internally represented by instances of
class LogLevel that is a wrapper around a numeric priority level. This class defines a set
of predefined log levels (as static class constants) that should match most real-life require-
ments. The numeric values and the alias names are closely related to the log level definitions of
java.util.logging. The following set of predefined log levels are available, presented in ascend-
ing priority:

BGet it at http://www.sourceforge.net/projects/phloc-logging



LogLevel.ALL is the very lowest log level and normally not used when issuing a log
message. Its numeric representation is -23,

LogLevel.TRACE is the lowest log level to be used for highly detailed tracing mes-
sages. Tracing messages should be used to log an application flow but not for indicating
errors and the like. Its numeric representation is 300.

LogLevel .FINEST is an alias for LogLevel . TRACE.

LogLevel .DEBUG should be used for fairly detailed tracing messages. Its numeric
representation is 400.

LogLevel .FINER is an alias for LogLevel .DEBUG.

LogLevel .NOTE should be used for information that will be broadly interesting to
developers who do not have a specialized interest in the specific subsystem. Its numeric
representation is 500.

LogLevel .FINE is an alias for LogLevel .NOTE.

LogLevel.CONFIG is a message level for static configuration messages. They are
intended to provide a variety of static configuration information, to assist in debugging
problems that may be associated with particular configurations. Its numeric representa-
tion is 700.

LogLevel.INFORMATION is a message level for informational messages. Typically
these messages will be written to the console or its equivalent. So this level should only
be used for reasonably significant messages that will make sense to end users and system
administrators. Its numeric representation is 800.

LogLevel.INFO is an alias for LogLevel.INFORMATION.

LogLevel .WARNING is a message level indicating a potential problem. In general
these messages should describe events that will be of interest to end users or system
managers, or which indicate potential problems. Its numeric representation is 900.

LogLevel.ERROR is a message level indicating a serious failure. In general these mes-
sages should describe events that are of considerable importance and which will prevent
normal program execution. They should be reasonably intelligible to end users and to
system administrators. Its numeric representation is 1000.

LogLevel.SEVERE is an alias for LogLevel . ERROR.

LogLevel.FATAL is a message level indicating a failure that prevents the application
from further execution. Its numeric representation is 1100.

LogLevel.OFF is a special level that can be used to turn off logging. Its numeric
representation is 231-1.



2.2.2 Log contexts

Each log context is represented internally as a class implementing the TLogContext in-
terface. Static contexts are implementing the ILogContextStatic interface whereas dy-
namic contexts are implementing the ILogContextDynamic interface that also extends
the TLogFormatable interface!*. Both specific interfaces inherit declarations from the
ILogContext interface.

Each log context is identified by a unique ID which is a numeric value different from 0.
By convention dynamic contexts have a positive integer value as ID and static contexts have a
negative number as ID. The IDs of the dynamic contexts are dynamically created at run-time
by incrementing a counter by one. By changing the initialization order of the dynamic contexts
(e.g. in the configuration file) the generated IDs are changed as well. The IDs of the static
contexts are hard-coded and cannot be altered. They have the same ID no matter how many
dynamic contexts are present. Logging contexts can also be enabled or disabled. Disabled
contexts are not taken into consideration when a log message is issued and therefore the current
values of the context are not stored in the LogRecord object (see chapter 2.2.3). Contexts can
be enabled or disabled at runtime which affects all log messages from that time on.

The main functionality of a log context is to deliver a value. Therefore the two methods
getContextValue and getContextValueClass exist. getContextValue needs
to deliver the current value whereas getContextValueClass needs to deliver the type
(=the Java Class object) of the object returned by get ContextValue. Each context value
needs to implement the java.lang.Comparable and java.io.Serializable inter-
faces so that log records can be sorted according to a certain log context and serialized to a

stream!?.

Imagine the example of a dynamic log context that delivers the name of the computer on
which logging takes place as its context value!®. getContextValue returns a String
object with the value "WS001” because the computer has the name "WS001”. getContext -
ValueClassreturns java.lang.String.class since the value returned by getContext—
Valueisof type java.lang.String.

Log contexts are managed by the class LogContextContainer. This class maps the ID
of alog context to the underlying ILogContext object. To access the global LogContextContainer
instance on which all loggers are based via the get G1obal method is used. More details about
the global log context container can be found in chapter 2.6.1 about loggers. If a log context is
added to a log context container it is checked whether the value class of this log context imple-
ments both the java.lang.Comparable and the java.io.Serializable interface
to avoid further incompatibilities.

It is possible to create new dynamic contexts by implementing the ILogContextDynamic
interface. To simplify the process an abstract helper class Abstract LogContextDynamic
exists that implements all the functionality required to create a dynamic log context except for
the getContextValueClass and getContextValue methods which is left for the real
implementation. The constructor of class AbstractLogContextDynamic requires the

“The interface ILogFormatable is used to format arbitrary objects when representing them as a string.

5Standard Java classes like String, Integer or Date all implement these interfaces.

' An implementation of this dynamic log context can be found in the class com.phloc.commons.log.ctx. -
LogContextDynamicHostname



following four parameters!”:

e The unique ID of the log context.
e The boolean state whether the log context should be enabled or disabled by default.
e The display name of the log context.

e The formatting string that should be used to format the value according to the required
formatter. Never pass null here.

2.2.3 Logging record

A log record is internally represented as an instance of class LogRecord. It consists of the
following parts:

e The log level specified when the message was issued,

e alist of LogRecordField objects containing references to the log contexts and their
current values and

o the optional additional information object passed by the programmer.

Instances of class LogRecord are passed to the output handler for further processing. The
main content is the list of LogRecordField objects that contain references to the original
log context objects and their values at the time the LogRecordField object was instantiated.
Via the LogRecordField.getAsString method the context values are converted into a
string object and optionally formatted, if a formatting object is present. Whether a value is
formatted or not depends on the implementation of the ILogFormatable interface within
the log context.

2.3 Dispatching

After a log record has been successfully created it needs to be dispatched to the output de-
vices that are interested in this log record. Therefore the log message that is received by
a single TLogger object is forwarded to a central dispatcher of type ILogDispatcher.
This interface is implemented in the classes com.phloc.commons.log.dispatch. -
LogDispatcherSynchronous for synchronous dispatching and com.phloc.commons.
log.dispatch.LogDispatcherAsynchronous for asynchronous dispatching. Both
implementations are singletons and there is no need to access them from outside the logging
system. Their sole purpose is the forwarding of a message to the registered output handlers.
The log dispatcher is just an in-process dispatcher and cannot be used to dispatch messages
between different processes or even between different hosts.

The input parameters for the dispatching is the source ILogger object (optional), the de-
sired log level (mandatory) and the message itself (mandatory). If no ILogger object is
passed, the default logger with the name “global” is used. Based on the used logger the out-
put handlers to which the message should be forwarded are determined. Now the message is
forwarded to each of these output handlers if they are enabled and if the selected log level of

'7 Another constructor exists that automatically generates an ID and therefore has only three parameters.



the output handler matches'® the passed log level of the message. For the first output handler
that matches the aforementioned criteria the LogRecord instance is build from the input pa-
rameters and that is the point where the log context values are determined. If no output handler
matches the criteria no LogRecord is ever build due to performance considerations mean-
ing also that no context values are determined. Before the main forwarding takes place it is
checked, whether the output handler has filters defined that may prevent the record from being
forwarded. The filter can check any element of the LogRecord object for potential filter crite-
ria. If no filters are defined or if the record matches the filter criteria the record is forwarded to
the output handler. All of this happens synchronously so the calling thread has to wait until the
logging routine is finished. The log dispatcher is instantiated within the LogFactozry class
and this happens only once before the first message is being dispatched.

As an alternative to the synchronous log dispatcher an asynchronous version can be selected.
The asynchronous message dispatcher is located in the class com.phloc.commons.log. -
LogDispatcherAsynchronous. The asynchronous version pools all log requests in a
queue and dispatches them in a separate thread. The goal of the asynchronous log dispatching is
to speed up the processing of the main application flow by spending less time in the log process-
ing thread. To activate the asynchronous dispatcher, the field com.phloc.commons.log. -
LogFactory.USE_SYNCHRONOUS_DISPATCHER has to be set to false. This needs to
happen before any logging takes place because the dispatcher is only instantiated upon the first
request.

2.4 Output handler

The real actions are taken by so called output handlers. An output handler forwards the created
LogRecord instance to an output device. An output device can be something like a file, a
console, a database or a network connection. Each output handler has a its own log level to
further detail the logging possibilities of the system and accept only messages with a certain
base priority. Output handlers can be disabled so that they receive no log messages at all. This
can happen at run-time and affects all forthcoming messages.

Each output handler is based on the interface ITLogOutputHandler that describes the
basic functionality like the log level handling and the enabling and disabling as well as the
forwarding of a record to the output device. No default output handler exists because no default
output device exists. phloc-logging comes with a set of predefined output handlers to log to the
following devices:

e Standard error console.
The implementation resides in the class com.phloc.commons. log.hdl.LogOutputHandlerCon
and has no specific properties.

e Standard output console.
The implementation resides in the class com.phloc.commons.log.hdl.LogOutputHandlerCon

and has no specific properties.

e Standard console.

181 og level matching means, that the log level of the output handler is < the log level of the message.

10



The implementation resides in the class com.phloc.commons.log.hdl.LogOutputHandlerConsole
and has no specific properties. The difference to com.phloc.commons.log.hdl. -
LogOutputHandlerConsoleStderr and com.phloc.commons.log.hdl. -
LogOutputHandlerConsoleStdout is that depending on the passed log level, the

output is written to stdout or to stderr.

e Flat file.

The implementation resides in the class com.phloc.commons.log.hdl.LogOutput—
HandlerFlatFile and can be parameterized as follows:

— Should new records be appended to an existing file or should old records be over-
written?

— A filename prefix that can include a path and a base name of the file to be used.

— A filename suffix that normally contains the filename extension. The default suffix
is ".log”.

— The maximum size of the file to be created. This is used to avoid the infinite growth
of the log file. If this value is set to O it means that the file can grow infinite. The
value for an infinite size is encapsulated in the constant INDEF INITE_SIZE. The
maximum file size needs to be at least 1024 bytes.

— The number of files to rotate. Rotation takes place if the maximum file size is
reached or if a new logging session starts and appending is disabled. This values
needs to be > 1.

e XML file.

The implementation resides in the class com.phloc.commons.log.hdl.LogOutput—
HandlerXMLFile and can be parameterized as follows:

— The absolute filename to be used.

It is not possible to set all the properties of the flat file because the XML file contains a
special header that contains information about the used log contexts and since the context
configuration may be different each time the logging system is started the header needs
to be written anyway to ensure data consistency.

Implementation note: currently the XML file handler does not emit valid XML since
it emits no XML header and no single root tag. To use the output of the XML output
handler the created contents need to be imported in an existing XML file. This is an issue
that needs to be solved in the next version. Another problem is that the change of log
contexts does not force the XML file handler to re-emit the contexts but only uses the
new context list. This is also an issue for the next version.

e In-memory list of log records.

The implementation resides in the class com.phloc.commons.log.hdl.LogOutput—
HandlerMemory and can be parameterized as follows:

— The maximum number of entries to be stored. Once that limit is reached, the oldest
entry is discarded before the new entry is added. This is useful to avoid out-of-
memory situations if logging is heavily used. By setting the maximum number of

11



entries to INDEFINITE_ENTRIES (numerically represented by 0) no storage lim-
its are applied but be careful having too many items in memory since this may lead
to an out of memory situation. This output handler also implements the ILog—
OutputHandlerModifyable interface that is an interface that allows modifi-
cations on the contained records.

e Network socket.

The network socket output handler is used to send full log records over a network connec-
tion. The transmission includes the full list of log context values and not only the assem-
bled string so that structured storage on the server side is accomplished. The network
socket output handler should only be used if an appropriate message server is running
somewhere else that accepts the incoming transmissions. The implementation resides
in the class com.phloc.commons.log.hdl.LogOutputHandlerSocket and
can be parameterized as follows:

— The host name to which the log records should be send to.

— The port to which the log records should be send to on the destination host. The
value needs to be between LogSettings.NETWORK_PORT_MIN (=1024) and
LogSettings.NETWORK_PORT _MAX (=65535) since on Unix operating sys-
tems the first 1024 ports (0-1023) are reserved for internal use. The default port is
5657 represented by the constant field LogSettings.NETWORK_PORT _DEFAULT.

phloc-logging ships with an example implementation of the server side part that can be
found in the class com.phloc.commons.log.server.LogServerImpl. Please
note that this implementation is not tested for robustness and may need some adoptions
to be used in real-world code.

e Adapters to third-party logging systems.

As specified in chapter 2.5 phloc-logging ships with adapters to third-party logging sys-
tems. The following list contains the output handlers that are used to forward log records
from phloc-logging to the other logging system. None of these output handlers has spe-
cial properties to be set. All implementation classes can be found in the package com. -
phloc.commons.log.adapter.

— AdapterToJavaUtilsLogging is used to forward messages to the java.util.-
logging framework that is shipped with J2SE since version 1.4.

— AdapterToApacheCommons is used to forward messages to the Apache com-
mons logging library'®.

- AdapterToLog4J is used to forward messages to the Log4] logging system?’.

The globally available list of output handlers is managed within the class com.phloc. -
commons.log.LogOutputHandlerContainer. It allows to add and remove output
handlers based on an internal list data structure. It is possible to add the output handler more
than once which results in double forwarding to this output handler so be careful when building
the list of output handlers.

More information to be found at http://jakarta.apache.org/commons/logging/
»More information to be found at http://logging.apache.org/log4j/

12



All of these output handlers are ready to be used in your applications and new output handlers
can easily be created. Creating a new output handler can be simplified by extending from the
abstract class com.phloc.commons.log.hdl.AbstractLogOutputHandler. This
class encapsulates the log level handling, the state handling and the filter management. Every-
thing except the forwarding to the real output device is handled within the abstract class. The
only methods that necessarily need to be implemented are outputRecord for forwarding a
record to an output device and clone for creating a deep-copy of the output handler.

2.5 Adapters to other logging systems

Most applications ship with a set of third-party components that incorporate their own logging
mechanisms which cannot easily be altered. Therefore phloc-logging contains adapters to other
frequently used logging systems: java.util.logging, Apache Commons Logging and Log4J. All
adapters are bidirectional that means that log messages can be sent to and received from the
other logging system. Adapters to send messages to other logging systems are realized as output
handlers (see chapter 2.4). There is no generic way to write adapters to receive messages from
other logging systems. Normally this is done by implementing a specific interface of the other
logging system.

The implementation classes reside in the package com.phloc.commons.log.adapter
and contain all the necessary code to use. Please note that you still need the additional JAR files
that are required to run the other logging system.

2.6 Usage

Now that all the internals are explained the following sections deals with the usage of the
logging system. The two important parts to use the logging system are the logger pool and the
single logger itself.

2.6.1 ILogger

A logger is the basic entity that forwards log messages to the dispatcher. It is used by the pro-
grammer to issue new log messages with a certain log level and an input message. A logger is
of interface type com.phloc.commons.log.ILogger and only instantiated from within
the class LoggerPool. A logger has the following properties:

e A read-only name.
e An optional minimum log level.

e An optional list of log contexts that apply to this logger. If no such list is specified, the
logger operates on the global list of log contexts.

e An optional list of output handlers this logger wants to log to. If no such list is specified,
the logger operates on the global list of output handlers.

The name is used to uniquely identify the object from within the pool. The purpose of the log
level is to allow certain loggers to ignore messages below a certain priority independently of the
registered output handlers. If no special log level is specified, a logger takes all messages. The

13



Method name Logging level

trace() LogLevel. TRACE

debug() LogLevel. DEBUG

note() LogLevel. NOTE

config() LogLevel. CONFIG

info() LogLevel. INFORMATION
warning() LogLeve WARNING
error() LogLevel. ERROR

fatalError() LogLevel. FATAL

Table 1: Shorthand methods for specific log levels

optional lists of log contexts and output handlers are used to specify log contexts and output
handlers that should be present only within this logger. If no special log contexts or output
handlers are specified, the globally defined elements are used. The class ILogger cannot be
directly instantiated. Only the class LoggerPool instantiates ILoggexr objects to minimize
the amount of instantiated objects and therefore save memory.

To issue a new log message the ILogger interface offers several possibilities. The most
generic way to issue a new message is by invoking the 1og method that takes two or three pa-
rameters depending on the amount of input data present. The parameters are separated into two
types: the log level and the data to issue. The log level always needs to be specified whereas
the data can come in different flavors. The easiest way to log an object is to simply pass it as
second parameter to the 1og method with or without an object that encapsulates the optional
additional information object. The third version of the 1og method takes an object of type
ILogMessage as its second parameter which is a wrapper around a data object and the ad-
ditional information. For sanity reason an ILogger object provides shorthand methods that
encapsulate a certain log level. So instead of writing logger.log (LogLevel.DEBRUG,
"foo") itis possible to use the shorthand method 1ogger.debug ("foo"). The follow-
ing table summarizes all available shorthand methods:

A special logger type is the hierarchical logger that resides in the interface com.phloc. -
commons.log.IHierarchicallLogger. Itis derived from interface ILogger and used
to build a hierarchy of ILogger objects that have shared properties. E.g. if a hierarchical
logger has no log level specified, the parent logger is queried. If the parent logger has no log
level the parent of the parent needs to be queried etc. The same applies to log contexts and
output handlers. If a new hierarchical logger is instantiated it inherits all the properties from
its parent logger (except the name). If the new logger does not have a parent logger (a so
called ’root logger”) the global list of log contexts and output handlers is used as fallback. If
a log context or an output handler is added to or removed from an existing logger this change
is also recursively performed in all child logger objects. The differentiation of loggers and
hierarchical loggers is to separate the handling of real logging provided by the class ILogger
and the sanity inheritance functionality provided by the hierarchical logger.

14



2.6.2 Logger pool

The purpose of the logger pool is to instantiate ILogger or IHierarchicallogger ob-
jects. This pool is helpful in minimizing the number of logger objects existing at one moment
because only references to already existing ILogger objects are returned instead of creating
new ones upon each request. This behavior also minimizes the amount of main memory re-
quired by the logging system due to the minimization of objects. That’s why the constructor of
class ILogger cannot be instantiated from outside the owning Java package.

The logger pools also keeps track of the hierarchy of loggers. The hierarchy of loggers
is build in the same way as Java manages the package hierarchy except that the name of the
logger objects are used and not package names. Each dot-separated token of a logger’s name
forms a hierarchy level where the root level is indicated by the first token on the left. When
for example querying the logger with the name “global.ui.menu” it is first checked whether a
root logger with the name “global” exists. If not it is created, otherwise the existing logger is
reused. Afterwards the “global”-logger is queried for a child-logger with the name ui” and so
forth. The returned ILogger object has the name “global.ui.menu” and a parent logger with
the name “global.ui” which in turn is a child of the root logger ”global”.

The logger pool resides in the class com.phloc.commons.log.LoggerPool and con-
tains only static methods. The method get Logger is used to access the predefined global log-
ger with the name “global”. The other important method is getLogger (String) where
the parameter designates the fully qualified name of the logger to be retrieved. get Iterator
is only used for diagnostic enumeration of the logger hierarchy. To ensure that the logging
system is shut down gracefully the shutdown method is provided that closes the complete
hierarchy of loggers and invalidates the hierarchy. After a call to shutdown no further log
processing is possible without new initialization.

2.7 Configuration

The logging system needs to be initialized before it can be used. Initialization means configur-
ing the available log contexts and the output handlers. There are two different ways to initialize
the logging system: the first is to manually instantiate the log contexts and add them to the
global log context container as well as creating the output handlers manually and inserting
them into the global output handler container. The other way is to use an XML based configu-
ration file that handles both global log contexts and global output handlers with their respective
properties. The XML file can be read with any Input St ream and does not necessarily need
to reside on the local hard disk even though this is the recommended place.

In case you don’t want to use a configuration file the class DefaultInitializer con-
tains the code to setup a basic set of log contexts and output handlers. The method createDefaultContexts
is used to initialize the container of global log contexts and createDefaultOutputHandler
is used to create output handlers to forward messages to standard output console and to a flat
file. The preferred way to initialize phloc-logging is the XML configuration file.

The configuration via XML allows the initialization of both static and dynamic log contexts
as well as output handlers. The XML file needs to have the following layout: The name of the
top-level element is not yet of importance but it’s recommended to call it “logging” in case it
becomes relevant for future versions. All child elements of the document element are evaluated
in document order.

15



Source type corresponding context

loglevel the log level specified
message the message object specified
name the name of the logger issuing a log record

Table 2: Source types and their corresponding static contexts

For using a dynamic log context the element name dyncontext is used. It has two manda-
tory attributes: class that contains the fully qualified name of the Java class to instantiate
and enabled that is used to enable or disable the context by default. The class to instantiate
needs to implement the ILogContextDynamic interface to be used by phloc-logging . The
log context is instantiated dynamically via the reflection feature of Java. The only requirement
for a dynamic log context to be instantiated is the presence of a constructor that takes a single
Boolean argument to indicate whether the log context is initially enabled or not.

Listing 1: Example for using a dynamic log context

<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicTotalSequence" enabled="false" />

Static contexts are instantiated similar to dynamic contexts except that there is no class name
to select but a source type (attribute srctype) since all static log contexts are implemented
by the same class com.phloc.commons.log.ctx.LogContextStatic. The source
type needs be one of the following elements:

Listing 2: Example for using a static log context

<staticcontext srctype="loglevel" enabled="true" />

Output handlers can be specified via the element name handler. They are instantiated like
dynamic log contexts via a fully qualified class name specified in the class attribute. The
class to instantiate needs to implement the ILogOutputHandler interface to be used by
phloc-logging and a constructor without parameters is required. An output handler is always
enabled and cannot be disabled via the configuration file. The child elements of an output
handler definition are used to dynamically set properties. Internally the name of the element
is converted to a method name by prefixing the element name with ”set” and uppercasing the
first character of the element name. The method is dynamically invoked on the created output
handler and passes the text-content of the element as a St ring parameter. So for example
the tag 1ogLevel is translated into the method name setLogLevel and in the following
example invoked with the parameter Trace”.

Listing 3: Example for using an output handler and dynamically applying properties

<handler class="com.phloc.commons.log.hdl.«
LogOutputHandlerFlatFile">
<logLevel>Trace</logLevel>
<prefix>myApplicationLog</prefix>
<maxBytesPerFile>1000000</ maxBytesPerFile>

16




<maxFiles>5</maxFiles>
<append>true</append>
</handler>

The following listing shows the XML representation of the default configuration that is build
into phloc-logging :

Listing 4: Default XML configuration file

<?xml version="1.0" encoding="iso-8859-1"7>
<logging>
<!— Log contexts; order is important —>
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicTotalSequence" enabled="true" />
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicCurThread" enabled="false" />
<staticcontext srctype="loglevel" enabled="true" />
<staticcontext srctype="name" enabled="false" />
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicOSUsername" enabled="false" />
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicHostname" enabled="false" />
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicDate" enabled="false" />
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicTime" enabled="true" />
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicDateTime" enabled="false" />
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicSourcePackage" enabled="false" />
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicSourceClass" enabled="false" />
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicSourceMethod" enabled="false" />
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicSourceFile" enabled="false" />
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicSourceLine" enabled="false" />
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicSourceFull" enabled="false" />
<dyncontext class="com.phloc.commons.log.ctx.«
LogContextDynamicSourceShort" enabled="true" />
<staticcontext srctype="message" enabled="true" />

<!— output handler; order is recommended —>

<handler class="com.phloc.commons.log.hdl.«
LogOutputHandlerConsole">

17




<logLevel>Debug</logLevel>

</handler>

<handler class="com.phloc.commons.log.hdl.«
LogOutputHandlerFlatFile">
<logLevel>Debug</logLevel>
<prefix>phloc—logging—default</prefix>
<!— 0 means infinite size: —>
<maxBytesPerFile>0</maxBytesPerFile>
<maxFiles>1</maxFiles>
<append>true</append>

</handler>

</logging>

3 Quick start guide

This section should give a brief overview how the logging system can be used out of the box.
It is assumed that no adapters to other logging systems are required (see chapter 2.5) and that
the JAR file containing phloc-logging is in your class path.

The following imports are necessary to perform the actions specified in the upcoming exam-
ple code.

Listing 5: Imports for the logging system

import com.phloc.commons.log.x;

Before using the logging system it needs to be initialized. By default the phloc-logging sys-
tem tries to look for the file phloc-logging—config.xml within the class path. If mul-
tiple files with this name exist within the class path the decision is up the JVM. The name of the
configuration file can be overridden by a system property called phloc.logging.configfile.
Example usage from the command line:
java -Dphloc.logging.configfile= /home/user/logging-config.xml
Anyway it is preferred to use the default configuration file to decrease coupling between the
logging system and the calling application.

Now it’s time to send the first log message to the system. Therefore an ILogger object is
acquired from the LoggerPool. Afterwards two requests are send to the logger. One that
manually passes the log level as a parameter and the other one that uses the shorthand method
ILogger .debug.

Listing 6: Using the logging system

// get logger object
final ILogger alLogger = LoggerPool.getLogger ("foo");

// Send message with explicit log level "info ”.
alLogger.log (LogLevel .INFO, "Info_Message");

// Send message with implicit log level “debug’.

18



alLogger.debug ("Debug_Message");

// Send message with implicit log level "error” and an <
additional exception.
// The stacktrace of the exception will be emitted.
try {
String s = null;
// cannot work:
s.split ("x");
} catch (NullPointerException ex) {
aLogger.error ("An_error_occurred splitting_the string", ex«

)

If no configuration file is provided, the created output looks like this:

Listing 7: Logger output on the console

! Config: Found no configuration file phloc—logging—config.«
xml — initializing with defaults

! Config: Initializing default log contexts

! Config: Initializing default output handler with level «
Debug

[1] Info 11:54:39,500 PhlocLoggingTest.main() Info Message

[2] Debug 11:54:39,515 PhlocLoggingTest.main() Debug Message

[3] Error 11:54:39,515 PhlocLoggingTest.main() An error «
occurred splitting the string

java.lang . NullPointerException

1.: PhlocLoggingTest.main(PhlocLoggingTest.java:17)

4 Future work

Since no software is ever finished this also applies to phloc-logging . The code is quite stable
and is used in production in several products. By releasing the code to Open Source I hope
the code is tested heavily and maybe further adapters, output handler and contexts are created.
Even though phloc-logging contains many adapters to other logging systems it may be required
to add adapters to other logging systems. Another open point is the creation of unit tests for the
logging framework to ensure that code changes do not effect other parts of the system and to
maintain integrity. There are already some JUnit 4 unit tests but the test code coverage is very
pure and needs to be extended to further improve code quality. There is also a list of known
limitations to phloc-logging that I plan to resolve in future versions. One point is the extended
network logging support and to add some more output handlers.

— Mach’s gut, und danke fiir den Fisch. —

19




References

[1] Beatrice Weiler and Edgar Nett A Generic Log-Service - The key architectural element to
support efficient recovery from node crashes.

[2] Michel Ruffin A Survey of Logging Uses.
[3] Log4J project http://logging.apache.org/log4j/

[4] Sun Java http://java.sun.com

20



	1 Logging System
	1.1 Introduction
	1.2 Basic concepts
	1.2.1 Log
	1.2.2 Record
	1.2.3 Logging semantics
	1.2.4 Logical and physical logs
	1.2.5 Log level
	1.2.6 Input and Output
	1.2.7 Log contexts
	1.2.8 Additional information

	1.3 Technical issues
	1.3.1 Performance
	1.3.2 Modularity
	1.3.3 Flexibility
	1.3.4 Multi threading
	1.3.5 Location independence


	2 The generic phloc-logging system
	2.1 Overview
	2.2 Input
	2.2.1 Log level
	2.2.2 Log contexts
	2.2.3 Logging record

	2.3 Dispatching
	2.4 Output handler
	2.5 Adapters to other logging systems
	2.6 Usage
	2.6.1 ILogger
	2.6.2 Logger pool

	2.7 Configuration

	3 Quick start guide
	4 Future work

